
 

 

Chapter 6 

6 Performance prediction in 

recommender systems 

In this chapter, we state and address the recommendation performance prediction 

problem, proposing and evaluating different prediction schemes. After laying out a 

formal frame for the problem, we start by researching the adaptation of principles 

and prediction techniques that have been proposed and developed in ad-hoc Infor-

mation Retrieval. More specifically, we draw from the notion of query clarity as a 

basis for finding suitable performance predictors that provide a well grounded theo-

retical formalisation. In analogy to query clarity, we hypothesise that the amount of 

uncertainty involved in user and item data (reflecting ambiguity in user‟s tastes and 

item popularity patterns) may also correlate with the accuracy of the system‟s rec-

ommendations. This uncertainty can be captured as the clarity of users and/or the 

clarity of items by an adaptation of the query clarity formulation. This adaptation, 

however, is not straightforward, as we shall describe. Besides the approaches elabo-

rating on the notion of clarity, we propose new predictors based on theories and 

models from Information Theory and Social Graph Theory. 

In Section 6.1 we formulate the research problem we aim to address. Next, in 

Sections 6.2, 6.3, and 6.4 we propose several performance predictors for recom-

mender systems, some of them based on the clarity score, information theoretical 

related concepts – such as entropy –, and graph-based metrics. The proposed predic-

tors are defined upon three different spaces, namely ratings, logs, and social net-

works. Moreover, we also provide specific correlations of the described predictors in 

Section 6.5 in order to show their predictive power under different conditions along 

with a discussion of the results. Finally, in Section 6.6 we provide some conclusions. 
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6.1 Research problem 

Performance prediction finds a special motivation in recommender systems. Con-

trary to query-based information retrieval, as far as the initiative relies on the system, 

a performance prediction approach may provide a basis to decide producing recom-

mendations or holding them back, depending on the expected level of performance 

on a per case basis, delivering only the sufficiently reliable cases. On the other hand, 

recommenders based on a single algorithm are not competitive in practice, and real 

applications heavily rely on hybridisations and ensembles of algorithms. 

The capability to foresee which algorithm can perform better in different cir-

cumstances can therefore be envisioned as a good approach to enhance the perform-

ance of the combination of algorithms by dynamically adjusting the reliance on each 

subsystem. Furthermore, it is well-known in the recommender systems field that the 

performance of individual recommendation methods is highly sensitive to different 

conditions, such as data sparsity, quality and reliability, which are subject to an ample 

dynamic variability in real settings. Hence, being able to estimate in advance which 

recommenders are likely to provide the best output in a particular situation opens up 

an important window for performance enhancement. Alternatively, estimating which 

users of a system are likely to receive worse recommendations allows for modifica-

tions in the recommendation algorithms to predict this situation, and react in ad-

vance. 

The problem of performance prediction has been however barely addressed in 

the Recommender Systems field. The issue has been nonetheless mentioned in the 

literature – evidencing the relevance of the problem – and is in some way often im-

plicitly addressed by means of ad hoc heuristic tweaks such as significance weighting 

in nearest neighbour recommenders (Herlocker et al., 1999) and confidence scores 

(Wang et al., 2008a), along with additional computations (mainly normalisations) 

which are introduced into the recommendation methods aimed to better estimate the 

predicted ratings. 

In the recommendation context, the problem of performance prediction can be 

stated as follows. We define a performance predictor as a function that takes a cer-

tain input, and returns a real value that correlates with some utility dimension of a 

recommender system. This is an instantiation of the problem presented in Section 

5.1 but in the recommendation setting. For such purpose, we first specify more pre-

cisely what the input space of predictors consists of, and how the predictor input and 

output relate to the data involved in recommendation. Thus, a utility predictor han-

dles the following information: 
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Input variables 

 The specific configuration of the recommender system. For instance, for a 

nearest neighbour recommender input parameters could be the neighbour map 

(that assigns a set of neighbours to each user) and a user similarity metric. 

 Any input of the recommender, such as the active user and the active item. 

 Background/context information: any known user, item, and user-item interac-

tion data, such as user ratings, user features, item features, social network in-

formation, data timestamps, etc. We have to note that, even though the predic-

tor will generally use this type information, we consider it as implicit input and 

do not include it explicitly in our notation to avoid making it needlessly cum-

bersome. 

Output variable 

 A value in  . 

A predictor is thus a function           (  being the set of all recom-

menders) that estimates the performance of the system, possibly using additional 

information available in the background. A predictor can be independent from some 

of these inputs, which would be then omitted in the previous notation. For instance, 

in this chapter we shall present predictors of the form       and      . Ad-

ditionally, a predictor may assume a specific parameterised recommender algorithm 

family (e.g. nearest neighbour collaborative filtering), and needs some element of its 

configuration as input. It may also happen that a predictor does not make any as-

sumption on the recommender – it does not depend on it – but still the predictor 

works well only for certain types of recommenders. It would be syntactically possible 

and correct to apply the predictor with other recommenders, although it may work 

badly. In general, what it means for a predictor to work “well” may depend on the 

application, but we generally assume it can be evaluated in terms of its correlation to 

some utility dimension of recommendations, such as an accuracy metric (RMSE, 

precision, nDCG) or alternative metrics such as novelty, diversity, etc. 

If a recommender system can be decomposed into its internal configuration, 

then a predictor can directly take as input the components of the recommender con-

figuration. For instance, neighbourhood-based collaborative filtering recommenders 

can be represented in        , where             is a preference 

estimation function (based on   similarity values between the target user and her 

neighbours, and   neighbours‟ ratings on the target item),          is a 

neighbourhood assignment map, and   is a similarity metric. Upon such a model, we 

would have              . 
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We may also constrain some inputs to a relevant condition they should meet. 

For instance, we could limit ourselves to a neighbourhood map that considers a user 

  as a candidate neighbour. In that case, this map can be essentially represented by  , 

and then we would have               (note that the first   in the 

Cartesian product stands for neighbour users, and the second   for target users). 

It is important to note that when the predictor takes as input some of the inputs 

of the recommender, namely the active user and/or the active item, then the predic-

tor‟s correlation with the recommender‟s utility must be measured on a per-input 

basis. For instance, if the predictor just takes users as input arguments, it should cor-

relate with the average utility per user. 

Moreover, predictors can also be used to enhance hybrid recommenders by fa-

vouring strategies that are predicted to produce better results. This can be done by 

relating activation switches in the recommenders to predictor values, so that one 

recommender or the others are activated or favoured depending on the predictor‟s 

estimation. 

The way in which these activation switches are related to predictors is typically 

application-dependent. For instance, in ensemble recommenders consisting of a 

unique (Boolean) selection among a set of recommenders, the selection/discarding 

of recommenders can be a binary function of a predictor for each recommender. If 

the ensemble consists of a linear combination of recommenders, the weights in the 

combination can also be a function of the predictors. In neighbourhood-based col-

laborative filtering, activation switches can be the weights of neighbours in the pre-

diction of user ratings. Indeed, relating predictor values to activation switches is a 

non-trivial problem and generally requires some research on itself. 

Based on all the above mentioned issues, the general research problem we ad-

dress consists of a) finding effective predictors of recommendation utility, and b) 

identifying and testing useful applications for the found predictors. In the reminder 

of this chapter we propose different predictors of recommendation utility using dif-

ferent types of input, namely ratings, logs, and social information. In Chapters 7 and 

8 we shall exploit and evaluate such predictors in two applications: dynamic hybrid 

recommendation, and dynamic neighbour weighting in collaborative filtering. 

6.2 Clarity for preference data: adaptations of query 

clarity 

In this thesis, we propose different adaptations for the concept of query clarity to 

recommender systems. First, we deal with the definition of user clarity when rating-

based preference data is available, where alternative ground models are proposed, 

depending on which random variables want to be considered in the computation of 
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the user clarity. Then, we define the concept of user clarity for log-based preference 

data. Additionally, for ratings we also define the concept of item clarity. 

Now we propose a fairly general adaptation of query clarity, which may be in-

stantiated into different schemes, depending on the input spaces considered. At an 

abstract level, we consider an adaptation that equates users in the recommendation 

domain to queries in the search domain, as the corresponding available representa-

tions of user needs in the respective domains. This adaptation results in the following 

formulation for user clarity: 

 

                      

      

    
   

 (6.1) 

As we can observe, the clarity formulation strongly depends on a “vocabulary” 

space  , which further constrains the user-conditioned model (or user model for 

short)       , and the background probability     . In ad-hoc information retrieval, 

this space is typically the space of words, and the query language model is a probabil-

ity distribution over words (Cronen-Townsend et al., 2002). In recommender sys-

tems, however, we may have different interpretations, and thus, different formula-

tions for such a probabilistic framework, as we shall show. In all cases, we will need 

to model and estimate two probability distributions: first, the probability that some 

event (depending on the current probability space  ) is generated by the user lan-

guage model (user model); and second, the prior probability of generating that event 

(background model). 

Under this formulation, user clarity is in fact the difference (Kullback-Leibler di-

vergence) between a user model and a background model. The use of user and back-

ground distributions as a basis to predict recommendation performance lies on the 

hypothesis that a user probability model being close to the background (or collec-

tion) model is a sign of ambiguity or vagueness in the evidence of user needs, since 

the generative probabilities for a particular user are difficult to single out from the 

model of the collection as a whole. In Information Retrieval, this fact is interpreted 

as a query for which the relevant documents are a mix of articles about different top-

ics (Cronen-Townsend et al., 2002). 

As an additional step, we generalise the adaptation stated in Equation (6.1) to al-

low for different reference probability models parameterised by a generic variable     
 

                           

        

      
   

  (6.2) 

This generalisation will allow for the development of further varieties of the clarity 

scheme, and simplifies to Equation (6.1) whenever we implicitly consider a fixed  , 

as we shall see next. Equivalently, the variable   may be integrated in both user and 

background models by exploiting a multidimensional vocabulary space: 
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 (6.2b) 

It is easy to see that Equations (6.2) and (6.2b) are fully equivalent, and thus al-

low two interpretations for the same magnitude. 

As stated in (Cronen-Townsend et al., 2002), language models capture statistical 

aspects of the generation of language. Therefore, if we use different vocabularies, we 

may capture different aspects of the user. The probabilistic relations between the 

variables involved in Equation (6.2) also depend on the nature of the data, and the 

different possible generative models induced by the recorded observations of user-

item interactions (the input to a recommender system). In this thesis we consider two 

types of interaction data records: users-rating-items (where the atomic event is a user 

rating an item with a value), and users “consuming” items (a user accesses an item at 

some time instant). The first type fits a dataset such as MovieLens and CAMRa, and 

the second fits well Last.fm data – the datasets on which we shall test the methods to 

be developed here. Across these two types, in our research we explore mainly three 

vocabulary spaces for  : ratings, items, and time. Each of the vocabulary spaces 

induces its own user-specific interpretation, as we shall see. As for the optional con-

textual parameter  , we shall consider here only the space of items ranging over the 

set of items – thus fully leveraging the triadic nature of the user-item-rating and user-

item-time spaces. The scheme is however open to the exploration of further possi-

bilities, as is the vocabulary space itself, beyond the options researched here. 

In the following sections we thus explore several alternatives for rating-based 

and log-based data spaces (and their induced generative models). 

6.2.1 Rating-based clarity 

As just mentioned, in the rating space, we consider a set of user-item-rating tuples, 

where each user-item pair appears in a unique tuple (i.e., users only rate items once). 

We consider two possible vocabulary spaces: items and ratings, and two context alter-

natives: items (which make only sense in the rating vocabulary) and none. The resulting 

clarity schemes are summarised in Table 6.1, and have each their own interpretation. 

The rating-based clarity model captures how differently a user uses rating values 

(regardless of the items the values are assigned to) with respect to the rest of users in 

the community. The item-based clarity takes into account which items have been 

rated by a user, and therefore, whether she rates (regardless of the rating value) the 

most rated items in the system or not. Finally, the item-and-rating-based clarity com-

putes how likely a user would rate each item with some particular rating value, and 

compares that likelihood with the probability that the item is rated with some par-

ticular rating value. In this sense, the item-based user model makes the assumption 

that some items are more likely to be generated for some users than for others de-
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pending on their previous preferences. The rating-based model, on the other hand, 

captures the likelihood of a particular rating value being assigned by a user, which is 

an event not as sparse as the previous one, with a larger number of observations. 

Finally, the item-and-rating-based model is a combination of the two previous mod-

els into a unified model incorporating items and ratings. As we mentioned before, 

this could be made more explicit by considering the user model          in the 

Equation (6.2b), which would be equivalent to this model under some indepence 

assumptions, i.e., when                      . 

Ground models for user clarity 

We ground the different clarity measures defined in the previous section upon a rat-

ing-oriented probabilistic model very similar to the approaches taken in (Hofmann, 

2004) and (Wang et al., 2008a). The sample space for the model is the set     

 , where   stands for the set of all users,   is the set of all items, and   is the set of 

all possible rating values. Hence, an observation in this sample space consists of a 

user assigning a rating to an item. We consider three natural random variables in this 

space: the user, the item, and the rating value, involved in a rating assignment by a 

user to an item. This gives meaning to the distributions expressed in the different 

versions of clarity as defined in the previous section. For instance,        represents 

the probability that a specific item   is rated with a value   – by a random user –, 

     is the probability that an item is rated – with any value by any user –, and so on. 

The probability distributions upon which the proposed clarity models are de-

fined can use different estimation approaches, depending on the independence as-

sumptions one would consider, and the amount of involved information. Back-

ground models are estimated using relative frequency estimators, that is: 

       
                      

                      
 (6.3) 

User clarity 
Vocabulary   / 

Context   

User 

model 

Background  

model 
Formulation 

Rating-based 
Ratings / 

None 
                        

      

    
 

 

Item-based 
Items / 

None 
                        

      

    
 

 

Item-and-

rating-based 

Ratings /  

Items 
                                   

        

      
   

 

Table 6.1. Three possible user clarity formulations, depending on the interpretation of the 

vocabulary and context spaces. 
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These are maximum likelihood estimations in agreement with the meaning of the 

random variables as defined above. Starting from these estimations, user models can 

be reduced to the above terms by means of different probabilistic expansions and 

Bayesian reformulations, which we define next for the three models introduced in 

the previous section. 

Item based model. The        model can be simply expanded through mar-

ginalisation over ratings, but under two different assumptions: the item generated by 

the model only depends on the rating value, independently from the user or, on the 

contrary, depends on both the user and the rating. These alternatives lead to the fol-

lowing developments, respectively: 

                          

   

 (6.4) 

                           

   

 (6.5) 

Rating based model. This model assumes that the rating value generated by the 

probability model depends on both the user and the item at hand. For this model, we 

sum over all possible items in the following way: 

 

                      

        

 (6.6) 

where the        term can be developed as in the item-based model above. The term 

         requires further development, which we define in the next model. 

Item-and-rating based model. Three different models can be derived depend-

ing on how the Bayes‟ rule is applied. In these models, item probability is assumed to 

be uniform and thus it can be ignored in the computation of the expectation in 

Equation (6.2). In the same way as proposed in (Wang et al., 2008a), three relevance 

models can be defined, namely a user-based, an item-based, and a unified relevance 

model: 

           
                

                    
 (6.7) 
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 (6.8) 

            
             

                 
 (6.9) 

The first derivation induces a user-based relevance model because it measures by 

         how probable it is that a user rates item   with a value  . The item-based 

relevance model is factorised proportional to an item-based probability, i.e., 

                  . Finally, in the unified relevance model, we have            

        . These estimations correspond respectively with the Equations 20a, 20b, 

and 21 from (Wang et al., 2008a); to make the thesis self-contained and facilitate the 

comparison between the different probability models, we present now these equa-

tions from (Wang et al., 2008a): 

          
 

        
 

 

  
   

  
   

  
 

        

 (6.10) 

          
 

        
 

 

  
   

  
   

  
 

        

 (6.11) 

          
 

      
 

 

  
   

  
   

  
 

 

  
   

  
   

  
 

          

 (6.12) 

where      is a Parzen Kernel function (Duda et al., 2001). In this formulation,   

denotes the user   represented as a vector by her ratings in the space of items. Un-

rated items can be filled with the average rating value or with other constant value, 

such as 0 or the average rating in the community. Respectively,   represents the item 

  in the user space.    and    are the bandwidth window parameter for the user and 

item vector, respectively;      denotes the set of observed samples where event     

has happened. For example,        denotes the set of observed samples with event 

         . More specifically: 

                       (6.13) 

                       (6.14) 

                           (6.15) 

In the experiments, we used a Gaussian Kernel function, i.e.,      

           , and           as suggested in (Wang et al., 2008a). 
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Finally, different combinations of distribution formulations and estimations re-

sult in a fair array of alternatives. Among them, we focus on a subset that is shown in 

Table 6.2, which provide the most interesting combinations, in terms of experimental 

efficiency, of user and background distributions for each clarity model. These alter-

natives are further analysed in detail below (with examples) and in Section 6.5.1 

where correlations obtained by each model are presented. 

Qualitative observation 

In order to illustrate the proposed prediction framework and give an intuitive idea of 

what user characteristics the predictors are capturing, we show the relevant aspects of 

specific users that result in clearly different predictor values, in a similar way to the 

examples provided in (Cronen-Townsend et al., 2002) for query clarity. We compare 

three user clarity models out of the seven models presented in Table 6.2: one for 

each formulation included in Table 6.1. In order to avoid distracting biases on the 

clarity scores that a too different number of ratings between users might cause, we 

have selected pairs of users with a similar number of ratings. This effect would be 

equivalent to that found in Information Retrieval between the query length and its 

clarity for some datasets (Hauff, 2010). 

Table 6.3 shows the details of two sample users on which we will illustrate the 

effect of the predictors. As we may see in the table,    has a higher clarity value than 

   for the three models analysed. That is, according to our theory,    is less “am-

biguous” than   . Figure 6.1 shows the clarity contribution in a term-by-term basis 

for one of the item-and-rating-based clarity models  where, in this case, terms are 

equivalent to a pair (rating, item)  as analysed in (Cronen-Townsend et al., 2002). In 

the figure, we plot                               for the different terms in the 

collection, sorted in descending order of contribution to the user model, i.e., 

User clarity name User dependent model Background model 

RatUser                          
RatItem                          
ItemSimple               

ItemUser                
IRUser                    
IRItem                    
IRUserItem                     

Table 6.2. Different user clarity models implemented. 

User Number of ratings ItemUser clarity RatItem clarity IRUserItem clarity 

   51 216.015 28.605 6.853 

   52 243.325 43.629 13.551 

Table 6.3. Two example users, showing the number of ratings they have entered, and 

their performance prediction values for three user clarity models. 
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        , for each user. For the sake of clarity, only the top 20 contributions are 

plotted. We may see how the user with the smaller clarity value receives lower con-

tribution values than the other user. This observation is somewhat straightforward 

since the clarity value, as presented in Equation (6.1), is simply the sum of all these 

contributions, over the set of terms conforming the vocabulary. In fact, the figures 

are analogous for the rest of the models, since one user always obtains higher clarity 

value than the other. 

Let us now analyse more detailed aspects in the statistical behaviour of the users 

that explain their difference in clarity. The IRUserItem clarity model captures how 

differently a user rates an item with respect to the community. Take for instance the 

top item-rating pairs for users 1 and 2 in the above graphic. The top pair for    is (4, 

“McHale‟s Navy”). This means that the probability of    rating this movie with 4 is 

much higher than the background probability (considering the whole user commu-

nity) of this rating for this movie. Indeed, we may see that    rated this movie with a 

3, whereas the community mode rating is 1 – quite farther away from 4. This is the 

trend in a clear user. On the other extreme of the displayed values, the bottom term 

in the figure for    is (2, “Donnie Brasco”), which is rated by this user with a 5, and 

the community mode rating for this item is 4, thus showing a very similar trend be-

tween both. This is the characteristic trend of a non-clear user. 

Furthermore, if we compare the background model with the user model, we ob-

tain more insights about how our models are discriminating distinctive from main-

stream behaviour. This is depicted in Figure 6.2. In this situation, we select those 

terms which maximise the difference between the user and background models. 

Then, for this subset of the terms, we sort the vocabulary with respect to its collec-

tion probability, and then we plot the user probability model for each of the terms in 

the vocabulary. 

 

Figure 6.1. Term contributions for each user, ordered by their corresponding contribution to 

the user language model. IRUserItem clarity model. 



114 Chapter 6. Performance prediction in recommender systems 

 

These figures show how the most ambiguous user obtains a similar distribution 

to that of the background model, while the distribution of the less ambiguous user is 

more different. In the rating-based model this effect is clear, since the likelihood of 

not so popular rating values (i.e., a „5‟) is larger for    than for   , and at the same 

time, the most popular rating value (a „4‟) is much more likely for   . The figure 

about the ItemUser model is less clear in this aspect, although two big spikes are 

observed for    with respect to the collection distribution, which correspond with 

two unpopular movies: „Waiting for Guffman‟ and „Cry, the beloved country‟, both 

with a very low collection probability. Finally, the figure about the IRUserItem model 

successfully shows how    has more spikes than   , indicating a clear divergence 

from the background model; in fact,   ‟s distribution partially mimics that of the 

collection. In summary, the different models proposed are able to successfully sepa-

 

 

 

Figure 6.2. User language model sorted by collection probability. 
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rate information concerning the user and that from the collection, in order to infer 

whether a user is different or similar from the collection as a whole. 

Item clarity 

Alternatively to user-based predictors, we can also consider item-based predictors, 

where the performance prediction is made on an item-basis. Item predictors can be 

defined analogously as those defined previously for users, the equation for item clar-

ity being as follows: 

 

                           

        

      
   

  (6.16) 

The formulation of the item predictors we propose is basically equivalent to the 

user-based scheme but swapping users and items. That is, we have the three formula-

tions presented in Table 6.4 where the vocabulary now may be either ratings or users, 

and the context variable is the user space. Based on these three formulations, and on 

derivations analogous to those presented before, we propose the seven item predic-

tors defined in Table 6.5 which are further evaluated in Section 6.5.2. 

In some of the instantiations of the item clarity predictor, we may observe that 

there are item probability models statistically equivalent to some of the user probabil-

ity models, such as the           and          . For this reason, we now only spec-

Item clarity 
Vocabulary   / 

Context   

Item 

model 

Background  

model 
Formulation 

Rating-based 
Ratings / 

None 
                        

      

    
 

 

User-based 
Users / 

None 
                        

      

    
 

 

User-and-

rating-based 

Ratings /  

Users 
                                   

        

      
   

 

Table 6.4. Three possible item clarity formulations, depending on the interpretation of the 

vocabulary and context spaces. 

Item clarity name Item dependent model Background model 

RatItem                          
RatUser                          
UserSimple               
UserItem                
URItem                    
URUser                    
URItemUser                     

Table 6.5. Different item clarity models implemented. 
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ify those probability models which have not been defined before, for the rest of es-

timations see Equation (6.3): 

                          

   

 (6.17) 

                           

   

 (6.18) 

                       (6.19) 

6.2.2 Log-based clarity 

In this section we adapt some of the previous models proposed for user clarity when 

the preference data come in the form of user-item interaction logs. Log data has a 

particularity we aim to exploit: the number of times a user consumes (purchased, 

listened, browsed, etc.) an item may be higher than one, in contrast with rating-based 

preferences, where the relation between a user and an item is summarised as a unique 

value, the rating. Moreover, the timestamp of the interactions has a stronger meaning 

in the implicit approach, as it informs of the very instant the user decided to use the 

item, rather than the time when the user decided to reflect on her quality of experi-

ence with the item (rating time). Specialised recommendation algorithms have been 

proposed in the literature that exploit such features in order to obtain better recom-

mendations (Xiang et al., 2010; Lee et al., 2008). Additional alternatives for the defi-

nition of the vocabulary may be proposed, but we shall focus on these two: log co-

occurrences and timestamps. 

Specifically, based on Equation (6.2) and the three instantiations of   and   

shown in Table 6.1, in principle only an instantiation analogous to the second one 

(   , no context – to which we shall refer as frequency-based clarity) makes sense 

here, as there is no rating space. However, it is possible to consider an additional 

space, which leads to structurally similar instantiations by taking time as the   vo-

cabulary. The similarity is only syntactic, as the meaning and implications of the re-

sulting magnitude, to which we shall refer as time-based clarity, are quite different 

from rating-based clarity – in other words, ratings and time are quite different dimen-

sions –, as we shall describe later below. 

Frequency-based clarity 

As mentioned above, we may define the following instantiation of the Equation (6.2) 

based on frequencies as follows: 

                                       

      

    
 

 (6.20) 
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where now the estimations of the user and background models are computed using 

directly the frequencies of the co-occurrences of some particular user-item interac-

tion in the data:  

 

     
       

           
 

 

       
         

              

 

(6.21) 

An alternative to such estimations is to use transformations from implicit log-

based to explicit ratings, such as the one proposed in (Celma, 2008). In that ap-

proach, any of the predictors based on ratings proposed in the previous section could 

be applied, since these transformations give the additional vocabulary space of rat-

ings that was absent in principle in log data. 

Time-based clarity 

As introduced earlier, the second dimension susceptible to be exploited when log-

based preference data are available is time. The time dimension is being paid increas-

ing attention in Information Retrieval, where, for instance, it has been integrated into 

language models as a means to capture some temporal information needs from the 

user (Berberich et al., 2010), and the temporal query dynamics are being increasingly 

considered in the field (Kulkarni et al., 2011). In fact, temporal query features have 

also been used for query performance prediction, showing low or moderate correla-

tion with query performance by themselves, although higher correlation is obtained 

when such features are combined with query clarity (Diaz, 2007; Diaz and Jones, 

2004). 

Furthermore, time has an inherent place in recommendation: recommender sys-

tems take as input (potentially long) histories of user interaction with items (Lathia, 

2010; Zimdars et al., 2001; Burke, 2010). Time is an essential dimension in making 

sense of the data, and in explaining, analysing and interpreting the motivations be-

hind the actions of users recorded over time. We propose to bring these ideas to 

recommender systems, in particular, to adapt the temporal features studied by Díaz 

and colleagues on a recommender system dataset. More specifically, we use the tem-

poral Kullback-Leibler divergence described in (Diaz and Jones, 2004) as a starting 

point, which we generalise and elaborate upong by considering the instantiation of 

Equation (6.2) for a time-based space  , and the space of items as a possible contex-

tual dimension, as presented in Table 6.6. In the following, we define the specific 

instantiations of the temporal clarity formulations presented in this table. 



118 Chapter 6. Performance prediction in recommender systems 

 

Time based model. We denote as TimeSimple clarity the most direct adapta-

tion for temporal clarity, which does not use any further extension over other dimen-

sions. It simply computes        using smoothing (see below) and       from the 

collection frequencies. 

Item-and-time based model. Like in the previous section, we develop condi-

tional probabilities into sums with respect to a third variable: the items rated by the 

user. Here, we define two temporal clarity predictors depending on the distribution 

assumed for the items in the summation. If the distribution is uniform we denote 

such predictor as ItemTime clarity and           . If, on the other hand, we 

also want to incorporate the popularity of the item for – which we have more data in 

this context and makes more sense than in rating data, since there the interaction 

between a user and an item is binary –, we include the prior item probability as 

          , which can be estimated considering the frequency by which   is ac-

cessed based on the interaction log. 

The probabilities presented above are estimated as follows: 

 

      
                     

   
 

      
                     

   
 

         
                 

                     
 

         
                 

                     
 

           
             

                 
 

(6.22) 

Note that the variable   in         in the above expressions denotes a timestamp 

in the discretised time segment (e.g. day, week) represented by  . Furthermore, these 

are simple estimations of the distributions; hence, it is also possible to introduce non-

parametric estimations or additional expansions through similar users or items (Wang 

et al., 2006a; Wang et al., 2008a). Moreover, distributions can also be modeled by 

User clarity 
Vocabulary   / 

Context   

User 

model 

Background  

model 
Formulation 

Time-based 
Time / 

None 
                       

      

    
 

 

Item-and-

time-based 

Time /  

Items 
                                 

        

      
   

 

Table 6.6. Two temporal user clarity formulations, depending on the interpretation of the 

vocabulary space. 
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other statistical theories or hypothesis (such as Bayesian inversion), and distribution 

fitting/modelling from time series theory could also be studied (Diaz and Jones, 

2004; Wang et al., 2008b). 

In particular, we have smoothed these estimations using Jelinek-Mercer as fol-

lows: 

 

                               

                               

                                   

(6.23) 

6.3 Predictors based on social topology 

Social information is widespread nowadays. As we surveyed in Chapter 2, recom-

mender systems that use social information are proliferating in the research literature, 

as well as in the recommender system industry, because of the effectiveness they are 

being found to have. It seems therefore sensible to consider social information as a 

potentially useful input for predicting the performance of recommendation. The mo-

tivation for this approach is obvious when applied to social recommender systems, 

though we will also explore its potential properties in relation to non-explicitly social 

recommendation, in order to study whether social topologies may have an indirect 

effect on the results of the algorithms for different users. 

With this goal in mind, we explore the use of graph-based measures as indicators 

of the user strength in the social network, which may in turn correlate with the ease 

or difficulty of users as recommendation targets. Graph-based measures developed 

from link-analysis theory are straightforward to interpret where they are often used 

to understand the structure of communities within a population (De Choudhury 

et al., 2010; Albert and Barabási, 2002). As a basis for user performance prediction 

they may thus bring an advantage in terms of explaining the predictions. 

More specifically, the utilised indicators of the user strength in the network are 

based on the following vertex measures computed over the social network for each 

user, where a user is represented as a node in the graph, and the user‟s friends corre-

spond with the node‟s neighbours: 

 Average neighbour degree: mean number of friends of each user‟s friend 

(Kossinets and Watts, 2006). 

 Betweenness centrality: indicator of whether a user can reach others on rela-

tive short paths (Freeman, 1977). 

 Clustering coefficient: probability that the user‟s friends are friends them-

selves (Watts and Strogatz, 1998). 
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 Degree: number of the user‟s friends in the social network (Milgram, 1967). 

 Ego components size: number of connected components remaining when 

the user and her friends are removed (Newman, 2003). 

 HITS: Kleinberg, 1999) defines two complementary measures which assign 

recursively a weight to each vertex (user) depending on the topology of the 

network. In this way, they define hubs and authorities: a vertex is a hub when it 

links to authoritative vertices, and is an authority when it links to hub vertices. 

Since the social network used here (see Appendix A.1.3) is undirected, hub and 

authority scores are redundant and we only report one, denoted as HITS. 

 PageRank score: well-known measure of connectivity relevance within a social 

network based on a random walk over the vertices, where a probability 

(      in our experiments) of jumping to any other vertex is introduced 

(Brin and Page, 1998). 

 Two-hop neighbourhood size: count of all the user‟s friends plus all the 

user‟s friend‟s friends (De Choudhury et al., 2010). 

6.4 Other approaches 

As a reference for comparison, we shall also test further predictors besides the ones 

proposed in the thesis, directly drawn from the literature, and not necessarily based 

on probabilistic formalisations, but following more loose formalisations, or heuristic 

approaches. As a further sanity check, we shall also examine obvious and simple 

functions (such as the amount of activity of a user), as a reference for the justification 

of elaborate approaches as proposed. Next, we present these predictors which are 

evaluated and compared in Section 6.5. 

6.4.1 Using rating-based preference data 

A fairly simple user predictor against which we would like to compare more elaborate 

functions is the count predictor, namely the number of items a user has rated at 

some specific moment. This predictor, as we shall see later, can be defined in the 

training set and in the test set, and although its rationale is the same, the output has 

different implications. Whereas in training this predictor is measuring how much 

information a recommender knows about some specific user, in test this value would 

be related to the amount of relevance used to obtain the performance metric. Fur-

thermore, as observed in Chapter 4, the amount of relevance would be different de-

pending on the evaluation methodology considered. However, we have to note that, 

due to statistical effects, the training count (profile size in training) and test count 
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(profile size in test) would probably be related if the training/test split is performed 

randomly. 

 
                          (6.24) 

Two additional heuristic predictors can be defined by looking at user statistics 

such as the mean and the standard deviation of the user‟s ratings. It seems plausi-

ble that such predictors would not be equally powerful for any type of recommender: 

it would depend on whether these statistics are used by the recommender. For in-

stance, one might have the intuition that the higher the standard deviation, the lower 

the recommendation performance as one may figure out uniform user ratings to be a 

somewhat easier target. 
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Alternatively to these heuristic predictors, we have also experimented with a pre-

dictor defined upon the past observed recommender‟s performance. In this way, this 

predictor – denoted as training performance from now on – use a validation set (as 

a subset of the original training set) to evaluate the performance of each user with 

respect to a specific recommender; then, this value is the one returned by the predic-

tor at test time. This approach is inspired in the Machine Learning techniques which 

aim to learn a feature (in this case, the user‟s performance) by using some training 

information. For this predictor, this training information is the performance com-

puted on the validation set. 

Additionally, we propose to measure the entropy of the user‟s preferences as a 

quantification of the uncertainty associated with a probability distribution (Cover and 

Thomas, 1991). We may therefore assess the uncertainty involved in the system‟s 

knowledge about a user‟s preferences by the entropy of the item distribution (the 

probability to choose an item) given the information in the user profile, using the 

ground models presented in Section 6.2.1. Hence, we define this predictor as follows: 

 

                            

    

 (6.27) 

Alternative measures from Information Theory could be used to define user-

based predictors, like Information Gain (Bellogín, 2009), but we leave them out of 

this analysis because its application to Recommender Systems is neither clear nor 

principled and their predictive results are not optimal. Furthermore, other measures 

already proposed in the literature such as inverse user frequency (Breese et al., 1998) 
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and the analogous inverse item frequency (Bellogín, 2009), and other manipulations 

of the same concept, are also ignored here because they are simply transformations 

of the previously presented count predictor. Finally, the concept of power users 

(Lathia et al., 2008) could also be used as a proxy for well-performing users, but pre-

liminary results have not shown strong predictive power. 

6.4.2 Using log-based preference data 

As we have observed in the previous section, recommendation performance usually 

has obvious predictors, obvious in the sense that they do not involve any interesting 

finding or insightful kind of analysis, or anything to learn from. We include in our 

analysis some of these obvious predictors, framed as baseline performance predictors 

that basically count how many interactions a user has had with the system. In this 

sense, these predictors are slightly different to the ones presented in the previous 

section, namely because in log-based datasets repetitions of items are allowed in a 

user‟s profile. In order to account for this difference, apart from count, mean, and 

standard deviation predictors, we propose to normalise the count predictor by the 

number of items consumed by each user, that is, we define the average count pre-

dictor as follows: 

 

                 
                     

                     
 (6.28) 

We also test more elaborate predictors based on the temporal dimension, such as 

the ones defined in (Diaz and Jones, 2004). First-order autocorrelation (or temporal 

self-correlation) can be considered with a reinterpretation of the random variables. 

Specifically, this predictor, in contrast with the temporal Kullback-Leibler divergence 

where the similarity with the temporal background model is assessed, captures the 

structure of the query time series. For instance, a uniform distribution would have an 

autocorrelation value of 0, whereas a query time series with strong inter-day (or 

whatever segment size is used to build the discrete time series) dependency will ob-

tain a high autocorrelation value. 

Thus, we define the autocorrelation user predictor as follows: 

 

                   
                            

   

               
   

 (6.29) 

where   is the total number of time units in the time interval. We can observe how 

this predictor captures the similarity between two consecutive observations.  

Extensions of this predictor could use the probabilities defined in Section 6.2.2, 

like         , instead of       . Similarly, other predictors proposed by Díaz and 

Jones in (Diaz and Jones, 2004) and (Jones and Diaz, 2007) such as the kurtosis or 
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the burst model could be adapted to recommender systems, but we leave such exten-

sions for future work. 

6.5 Experimental results 

In this section we provide correlation results where all the predictors – heuristic, 

social, and clarity-based – are compared against each other using an array of recom-

mendation methods and evaluation methodologies. 

6.5.1 User predictors using rating-based preference data 

In this section we compare the correlations obtained for the clarity-based predictors 

defined in Section 6.2.1, the user entropy defined in Equation (6.27), and the base-

lines presented in Equations (6.24), (6.25), and (6.26) using the MovieLens 1M data-

set. The   parameter for the language model smoothing was not optimised for this 

task and a default value of     was used in all the models as originally used in 

(Cronen-Townsend et al., 2002). Here, we focus on Pearson‟s correlation and P@10. 

Additional results are reported in Appendix A.4.1. 

Table 6.7 shows the correlation values when the AR methodology is used. We 

can observe fairly high correlation values for recommenders pLSA, ItemPop, TFL2, 

and kNN, comparable to results in the query performance literature. A slightly lower 

correlation is found for TFL1, whereas no correlation is found for CB and IB. These 

results are consistent when other performance metrics are used such as nDCG, and 

at different cutoff points. Spearman‟s correlation yields similar values. Here we also 

include the count predictor in test, which is obviously not a predictor in strict sense, 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 Median Mean 

Count (training) 0.135 0.164 0.042 0.512 0.424 0.442 0.198 0.644 0.311 0.320 

Count (test) 0.135 0.172 0.042 0.520 0.431 0.452 0.200 0.647 0.316 0.325 

Training performance 0.024 0.176 0.258 0.429 0.296 0.357 0.215 0.485 0.277 0.280 

Mean 0.019 0.067 -0.002 0.015 0.022 0.108 0.026 -0.018 0.021 0.030 

Standard deviation 0.008 0.008 0.011 -0.029 -0.031 -0.032 0.011 -0.051 -0.011 -0.013 

ItemSimple Clarity 0.149 0.191 0.046 0.549 0.453 0.489 0.222 0.683 0.338 0.348 

ItemUser Clarity 0.134 0.166 0.048 0.493 0.416 0.428 0.215 0.634 0.316 0.317 

RatUser Clarity 0.135 0.160 0.048 0.514 0.442 0.435 0.214 0.651 0.325 0.325 

RatItem Clarity 0.127 0.159 0.039 0.475 0.402 0.405 0.203 0.611 0.303 0.303 

IRUser Clarity 0.128 0.157 0.027 0.486 0.382 0.408 0.182 0.599 0.282 0.296 

IRItem Clarity 0.122 0.165 0.034 0.446 0.352 0.386 0.188 0.551 0.270 0.281 

IRUserItem Clarity 0.128 0.158 0.033 0.479 0.379 0.403 0.193 0.594 0.286 0.296 

Entropy 0.121 0.168 0.025 0.492 0.389 0.483 0.140 0.589 0.279 0.301 

Median 0.128 0.162 0.037 0.489 0.396 0.418 0.196 0.605   

Mean 0.112 0.145 0.033 0.413 0.338 0.367 0.166 0.511   

Table 6.7. Pearson’s correlation between rating-based user predictors and P@10 for different recommenders using 

the AR methodology (MovieLens dataset). 
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since it uses a different input than the other predictors, but we include it in our 

analysis as a further reference to check behaviours. 

As mentioned in Chapter 5, the standard procedure in Information Retrieval for 

this kind of evaluation is to compute correlations between the predictor(s) and one 

retrieval model (like in (Cronen-Townsend et al., 2002) and (Hauff et al., 2008a)) or 

an average of several methods (Mothe and Tanguy, 2005). This approach may hide 

the correlation effect for some recommenders, as we may observe from the median 

and mean correlation values included in the table, which are still very large despite 

the fact that two of the recommenders analysed have much lower correlations. 

Nonetheless, these aggregated values, i.e., the mean and the median, provide com-

petitive correlation values when compared with those in the literature. 

The difference in correlation for CB and IB recommenders may be explained 

considering two factors: the actual recommender performance and the input sources 

used by the recommender. With regards to the first factor, as presented in Table 6.8, 

the IB algorithm performs poorly (in terms of the considered ranking quality metrics, 

such as precision and nDCG) in comparison to the rest of recommenders. It seems 

natural that a good predictor for a well performing algorithm (specifically, pLSA is 

the best performing recommender in this context) would hardly correlate at the same 

time with a poorly performing one. 

This does not explain however the somewhat lower correlation with the content-

based recommender, which has better performance than TFL1. The input informa-

tion that this recommender and the predictors take in are very different: the latter 

compute probability distributions based on ratings given by users to items, while the 

former uses content features from items, such as directors and genres. Furthermore, 

the CB recommender is not coherent with the inherent probabilistic models de-

scribed by the predictors, since the events modeled by each of them are different: CB 

would be related to the likelihood that an item is described by the same features as 

those items preferred by the user, whereas predictors are related to the probability 

that an item is rated by a user. Moreover, the predictors‟ ground models coherently 

fit in the standard collaborative framework (Wang et al., 2008a), which reinforces the 

suitability of the user performance predictors presented herein, at least for collabora-

tive filtering recommenders. 

It is worth noting to this respect that most clarity-based query performance predic-

Recommender Random CB IB ItemPop kNN pLSA TFL1 TFL2 

AR methodology 0.0025 0.0163 0.0001 0.0897 0.0307 0.1454 0.0024 0.0696 

1R methodology 0.0099 0.0221 0.0074 0.0649 0.0437 0.0836 0.0221 0.0690 

U1R methodology 0.0100 0.0223 0.0068 0.0406 0.0381 0.0718 0.0294 0.0524 

P1R methodology 0.0101 0.0197 0.0208 0.0282 0.0265 0.0604 0.0203 0.0348 

Table 6.8. Summary of recommender performance using different evaluation methodologies 

(evaluation metric is P@10 with the MovieLens dataset). 
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tion methods in Information Retrieval study their predictive power on language model-

ling retrieval systems (Cronen-Townsend et al., 2002; Hauff et al., 2008a; Zhou and 

Croft, 2007) or similar approaches (He and Ounis, 2004). This suggests that a well per-

forming predictor should be defined upon common spaces, models, and estimation 

techniques as the retrieval system the performance of which is meant to be predicted. 

Finally, the correlation values found by the training performance predictors, al-

though sometimes strong, are not as high as those of the baselines predictors – such as 

training count – in most situations, in particular, they are always lower except for the 

IB and TFL1 recommenders. This highlights the importance of having a more general 

model for predicting the performance of a user, since these predictors in fact depend 

considerably on the properties of the validation (and test) partition of the data, such as 

the amount of sparsity, type of items evaluated and so on. 

Unbiased performance prediction 

In Chapter 4 we already demonstrated that some methodologies may be biased to-

wards more popular items or sparsity constraints. We can observe in the previous 

table that trivial predictors such as count (either in training or in test) obtain signifi-

cant (and positive) correlation, no matter the recommender. We argue whether this is 

because these predictors are really capturing an interesting effect or the evaluation 

methodology is prone to such effect. In order to overcome this problem, now we 

present the same correlation analysis but with the different methodologies presented 

in Chapter 4. 

In Table 6.9 we show results with the methodology 1R. Here we can observe 

that most of the correlation values are lower than in the previous case; interestingly, 

the correlation with the Random recommender now is almost 0 for every predictor 

(and in particular, for the training and test profile size). This is evidence that per-

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.061 -0.038 0.092 0.258 0.108 0.303 0.086 0.394 

Count (test) 0.063 -0.033 0.091 0.266 0.115 0.312 0.089 0.398 

Training performance 0.012 0.332 0.168 0.272 0.266 0.133 0.303 0.240 

Mean 0.036 0.082 -0.029 0.028 0.111 0.117 0.145 0.031 

Standard deviation -0.010 0.006 0.051 -0.060 -0.116 -0.080 -0.040 -0.114 

ItemSimple Clarity 0.066 -0.033 0.094 0.265 0.115 0.322 0.105 0.409 

ItemUser Clarity 0.059 -0.038 0.087 0.236 0.100 0.287 0.096 0.375 

RatUser Clarity 0.057 -0.054 0.083 0.245 0.130 0.285 0.086 0.372 

RatItem Clarity 0.057 -0.044 0.069 0.225 0.110 0.268 0.094 0.352 

IRUser Clarity 0.056 -0.020 0.053 0.250 0.069 0.280 0.077 0.364 

IRItem Clarity 0.051 -0.010 0.058 0.205 0.029 0.235 0.074 0.310 

IRUserItem Clarity 0.056 -0.020 0.052 0.242 0.066 0.273 0.081 0.357 

Entropy 0.091 0.021 0.144 0.354 0.169 0.460 0.114 0.543 

Table 6.9. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the 1R methodology (MovieLens dataset). 
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formance results using the AR methodology are higher for users with more items in 

their test, independently from the recommendation algorithm complexity (see corre-

lations with Random recommender in Table 6.7). In the same way, the U1R (Table 

6.10) and P1R (Table 6.11) methodologies also obtain negligible correlation values 

for the Random recommender, which confirms the suitability of these methodologies 

for our purposes. We also have to note that we have not applied the training per-

formance predictor in these methodologies because their restrictions do not let to 

replicate the same conditions in a validation split. Furthermore, as stated in Chapter 

4, both approaches aim to remove the bias towards more popular items. Here, we 

can observe how the correlation with respect to the ItemPop recommender is com-

parable to that with the Random recommender with the P1R methodology, confirm-

ing again the ability of this methodology to produce unbiased results (at least, with 

respect to popular items). 

The main difference in the results obtained between these three methodologies 

(1R, U1R, and P1R) seems to be more at the recommender level rather than at the 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.048 -0.012 0.237 0.162 0.115 0.140 0.022 0.235 

Count (test) 0.049 -0.001 0.226 0.135 0.110 0.137 0.036 0.213 

Mean 0.023 0.051 -0.035 0.009 0.108 0.075 0.155 -0.006 

Standard deviation 0.015 0.032 0.023 -0.047 -0.098 -0.038 -0.061 -0.049 

ItemSimple Clarity 0.055 -0.005 0.241 0.166 0.128 0.153 0.042 0.241 

ItemUser Clarity 0.046 -0.009 0.232 0.142 0.109 0.133 0.028 0.216 
RatUser Clarity 0.045 -0.028 0.234 0.155 0.137 0.130 0.022 0.225 

RatItem Clarity 0.043 -0.025 0.212 0.136 0.119 0.117 0.033 0.203 

IRUser Clarity 0.044 0.002 0.180 0.153 0.069 0.134 0.029 0.210 

IRItem Clarity 0.036 0.011 0.178 0.114 0.035 0.108 0.014 0.173 

IRUserItem Clarity 0.042 0.003 0.178 0.147 0.065 0.130 0.028 0.203 

Entropy 0.078 0.044 0.278 0.227 0.169 0.249 0.073 0.321 

Table 6.10. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the U1R methodology (MovieLens dataset). 

Predictor Random CB IB ItemPop kNN pLSA TFL1 TFL2 

Count (training) 0.073 -0.005 0.253 0.088 0.103 0.160 -0.001 0.307 

Count (test) 0.076 0.000 0.253 0.093 0.108 0.168 0.003 0.308 

Mean 0.034 0.073 -0.033 0.008 0.110 0.085 0.188 -0.026 

Standard deviation -0.010 0.009 0.014 -0.058 -0.104 -0.044 -0.061 -0.051 

ItemSimple Clarity 0.078 0.000 0.254 0.084 0.111 0.169 0.019 0.313 

ItemUser Clarity 0.072 -0.001 0.249 0.075 0.101 0.156 0.005 0.303 

RatUser Clarity 0.071 -0.016 0.252 0.086 0.128 0.148 0.003 0.297 

RatItem Clarity 0.067 -0.011 0.234 0.077 0.113 0.138 0.016 0.288 

IRUser Clarity 0.066 0.002 0.200 0.086 0.066 0.147 0.006 0.274 

IRItem Clarity 0.059 0.010 0.192 0.061 0.037 0.123 -0.006 0.242 

IRUserItem Clarity 0.066 0.003 0.200 0.082 0.065 0.145 0.006 0.272 

Entropy 0.092 0.038 0.286 0.133 0.128 0.266 0.039 0.379 

Table 6.11. Pearson’s correlation between rating-based user predictors and P@10 for different 

recommenders using the P1R methodology (MovieLens dataset). 
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predictor level, in the sense that the trend in predictor effectiveness is similar for 

each methodology but the correlations obtained for each recommender vary dra-

matically from one methodology to another. For instance, IB recommender obtains 

near zero correlations with 1R but higher (significative) values for U1R and P1R; a 

similar situation occurs with the TFL2 recommender, where the correlations are 

lower for the U1R methodology and higher for 1R and P1R. Note that the training 

and test sets are the same for all the methodologies except for U1R, which means 

that the performance predictors are entirely new for that methodology. Thus, a priori 

it would not be clear that such an agreement between the different methodologies 

should appear at the predictor level unless they are really capturing the same nuance 

about the user, no matter the evaluation methodology used. 

It is worth noting that the correlation values of these three methodologies have 

been found after a careful examination of the available data, where two different 

trends emerged: one where the performance values were more or less uniformly dis-

tributed in the interval [0,0.1] – recall that 0.1 is the maximum value for the metric 

P@10 with the 1R methodology, since there is only one relevant item – ; and a sec-

ond one where a fixed value was obtained. This second trend, against which our pre-

dictors shown no correlation at all (since the performance had a zero standard devia-

tion, and thus the correlation was impossible to calculate) is able to degrade the cor-

relation coefficient almost to negligible values, mainly because it accounts for half of 

the number of points. This problem with correlation coefficients, and with Pearson‟s 

correlation in particular, is well known in the literature of performance prediction 

(Hauff, 2010; Pérez Iglesias, 2012). For this reason, we have divided the performance 

values and computed two correlations in order to account for these two trends: the 

values with respect to the first trend are those presented in the previous tables, 

whereas the correlation with respect to the second trend was not computable be-

cause the variable had a zero standard deviation. 

In summary, there seems to be no clear winner among the set of performance 

predictors proposed. The predictive power of each of them is clearly influenced by 

the actual recommender its performance aims to be predicted and the evaluation 

methodology in use. Nonetheless, the proposed predictors usually obtain higher 

correlation values than baseline predictors such as the mean or the standard de-

viation, evidencing their predictive power independently from the evaluation 

methodology. Surprisingly, the ItemSimple clarity predictor obtains very good re-

sults in most of the situations, although more complex predictors like IRUser or 

IRUserItem clarity obtain stronger correlations for some recommenders. 

6.5.2 Item predictors using rating-based preference data 

In the same way we have assessed the predictive power of user predictors, we now 

aim to estimate the predictive power of item predictors. However, the true perform-



128 Chapter 6. Performance prediction in recommender systems 

 

ance value for an item is not straightforward to compute, since the process has to 

produce unbiased results in the space of items (as described in Chapter 4) but with 

the characteristic that the item dimension is not the main input of the recommenda-

tion process, and thus, sone new approach has to be put in place. 

There are basically two possibilities for computing the true performance on an 

item: either starting from the results obtained using a standard procedure (obtain a 

ranking for each user by recommending items to users), then transposing users and 

items (generating, thus, user rankings for each item) and computing the per-ranking 

performance as usual; or transpose the original rating matrix in order to effectively 

“recommend users” for each item. This would implicitly imply a transposition of the 

recommendation task, which may also make sense: find the most suitable users to 

recommend an item – this would be the scenario, e.g. in advertisement targeting 

when a new product is released on the market. Here, we use the former approach 

since the latter does not produce consistent results in our experiments, probably be-

cause the recommendation problem is not completely symmetric and, thus, this 

method is not able to properly capture the recommender‟s performance for each 

item. On the other hand, non-personalised recommenders (such as recommendation 

by item popularity) cannot be applied in the symmetric formulation: since the same 

item ranking is built for all users, the user ranking for an item would be a global tie 

on all users. Table 6.12 shows an example of how we may transpose users and items 

from an item ranking for three users. We show that the precision for all the users is 

the same, whereas for the items is completely diverse, ranging from zero to perfect 

precision. 

In our experiments, we have tested the different methodologies already pre-

sented along with a modified version of the U1R evaluation methodology (user-

uniform U1R, or uuU1R). The rationale for the uuU1R design goes as follows: in the 

U1R methodology we force the same number of ratings (or, equivalently, users) for 

the items in the test set, however, users are freely assigned to each item. Now, when 

we transpose users and items this situation may produce a new problem, since there 

                       

    0.8    0.6    0.9  *    0.8    0.7    0.9 *    0.6 

 *    0.7 *    0.5 *    0.6  *    0.5    0.6 *    0.6     0.5 

 *    0.6 *    0.4 *    0.5     0.3    0.1 *    0.5 *   0.4 

    0.5    0.3    0.1          

P@2 0.5 0.5 0.5  1.0 0.0 0.5 0.5 

Table 6.12. Procedure to obtain ranking for items from user rankings generated by a 

standard recommender. * denotes a relevant item, and the numbers are the score 

predicted by the recommendation method. 
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could be users assigned to more items which would bias the ranking‟s performance 

towards items contained in the test set of heavy raters. Therefore, if we impose a 

uniform distribution also on the user‟s dimension, this bias should decrease. We refer 

to the reader to Appendix A.3 for more details. 

However, despite these efforts, we have not found a reliable methodology to 

evaluate the item performance. We present in Table 6.13 the results using the uuU1R 

methodology and the predictors defined in Table 6.5 for the precision metric. Recall 

that, since we transpose users and items from the generated rankings, to obtain a 

similar measure of P@10 we only use the top 10 items from each original ranking 

and then compute precision over the whole ranking for each item. We may observe 

in the table that the correlations with the Random recommender are very strong, 

questioning the validity of such results. Besides, the entropy predictor obtains 

stronger correlation than clarity-based in this case, and most of them (except for 

URItem) show little difference to training count. Note that it is not possible to com-

pute a correlation with the test count predictor since that predictor has a constant 

value with zero standard deviation (see Equation (5.11) for more details on Pearson‟s 

correlation) since every item has the same number of ratings in the test set in the 

uuU1R methodology. 

As a conclusion, we have found that a proper evaluation of item performance 

is not obvious, mainly because the task of suggesting users to items is not com-

pletely symmetric with respect to the standard task of recommendation. We have 

devised different methodologies to estimate the recommendatoin performance of an 

item, however the difficulty lies mainly in forming consistent lists of “recommended” 

users for items, a difficulty which is not conceptual (ranking target users to whom an 

item may be recommended does make sense as a task in many scenarios), but techni-

cal (obtaining balanced result lists that allow for undistorted performance measure-

ments). 

Predictor Random CB ItemPop kNN pLSA 

Count (training) 0.414 0.060 -0.151 -0.021 -0.269 

Count (test) ------- ------- ------- ------- ------- 

Mean 0.602 0.125 0.096 0.040 -0.038 

Standard deviation -0.313 0.025 -0.006 -0.003 0.075 

UserSimple Clarity 0.467 0.080 -0.120 -0.015 -0.240 

UserItem Clarity 0.419 0.064 -0.145 -0.018 -0.261 
RatItem Clarity 0.440 0.075 -0.127 -0.015 -0.230 

RatUser Clarity 0.451 0.085 -0.103 -0.004 -0.201 

URItem Clarity 0.396 0.053 -0.174 -0.026 -0.289 

URUser Clarity 0.408 0.072 -0.132 -0.004 -0.243 

URItemUser Clarity 0.409 0.061 -0.161 -0.021 -0.277 

Entropy 0.381 -0.001 -0.216 -0.055 -0.442 

Table 6.13. Pearson’s correlation for rating-based item predictors and precision 

using the uuU1R methodology (MovieLens dataset). 
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6.5.3 User predictors using log-based preference data 

In this section we analyse the correlation obtained between the predictors defined in 

Sections 6.2.2 and 6.4.2 and five recommenders using the 1R methodology on two 

versions of the Last.fm dataset – one where a temporal partition is performed and 

another where the partition is randomly made (more details about the splits in Ap-

pendix A.1.2). No smoothing was used in the language models since preliminary tests 

obtained better results with lower values of  . Besides, for comparison purposes, we 

also include one of the clarity models proposed for rating-based preference data us-

ing the transformation proposed in Section 6.2.2 to use such predictors with log data 

along with the frequency-based clarity proposed in Equation (6.20). Like in the pre-

vious section, Pearson‟s correlation with the P@10 evaluation metric is reported; for 

additional metrics, see Appendix A.4.2. 

First, we can observe in Table 6.14 (temporal split) that ItemPriorTime clarity 

obtains strong correlation values, especially for the ItemPop and kNN recommend-

ers. It is interesting to compare the correlations between this predictor and the Item-

Time clarity, which are much lower. This is probably because the ItemPriorTime 

clarity predictor, as opposed to ItemTime clarity, incorporates a component that 

measures the item popularity, i.e.,     . The TimeSimple and the frequency-based 

clarity predictors, on the other hand, obtain strong correlation but negative values for 

all the recommenders except the ItemPop for the TimeSimple predictor. Further-

more, the ItemSimple clarity (a predictor based on explicit information) obtains neg-

ligible correlations except for the ItemPop and kNN recommenders. 

Table 6.15, on the other hand, shows the results when a random split is used. We 

have to note that such split does not preserve the temporal continuity of the user‟s 

preferences, and thus, any recommender or technique which makes use of temporal 

features is not guaranteed to succeed. Here, we can observe that TimeSimple predic-

tor obtains strong correlations for all the recommenders except for the Random 

Predictor Random CB ItemPop kNN pLSA 

Average Count 0.027 0.138 0.069 -0.013 0.191 

Count 0.046 0.118 -0.058 0.131 0.139 

Mean -0.079 -0.361 0.054 -0.110 -0.376 

Standard deviation -0.050 -0.158 0.082 -0.132 -0.177 

Autocorrelation 0.004 0.139 -0.066 -0.105 0.100 

TimeSimple Clarity -0.091 -0.342 0.093 -0.317 -0.354 

ItemTime Clarity 0.037 0.078 0.038 0.258 0.064 

ItemPriorTime Clarity 0.057 0.154 0.189 0.307 0.154 

Frequency-based Clarity -0.049 -0.410 -0.221 -0.291 -0.376 

ItemSimple Clarity 0.027 0.047 -0.107 0.221 0.029 

Table 6.14. Pearson’s correlation between log-based predictors and P@10 for different 

recommenders using 1R methodology (Last.fm temporal dataset). 
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technique. Like before, ItemPriorTime has a high correlation with the ItemPop re-

commender. In contrast with the previous situation, the ItemSimple clarity obtains 

strong but negative correlations for the personalised recommenders. Besides, the 

frequency-based clarity has negative correlations for all the recommenders except 

CB, a consistent situation with the results obtained with the temporal split. 

Hence, we may conclude that log-based and time-aware predictors success-

fully predict the performance of the recommendation algorithms, although in 

some situations the sign of the prediction is negative. Moreover, frequency-based, 

ItemSimple, and TimeSimple clarity obtain consistently strong correlations both in a 

temporal split and in a random split of the data, evidencing their predictive power. 

6.5.4 User predictors using social-based preference data 

In this section we study the correlation between the predictors described in Section 

6.3 and several recommenders using the two versions of the CAMRa dataset: social 

and collaborative. In this case, we also consider social filtering recommenders in or-

der to analyse whether these predictors are sensitive to the source of information 

used by the recommender, and thus, whether they obtain stronger correlations with 

social filtering recommenders. Besides, one clarity-based predictor (ItemSimple) and 

the baseline rating predictors presented in Section 6.4.1 are also included in the 

analysis for comparison purposes. Additionally, for the HITS and PageRank graph 

metrics in this experiment we use the implementation developed in the JUNG library 

(O‟Madadhain et al., 2003). 

Table 6.16 shows correlation values obtained when using the AR methodology 

in the social version of the dataset. Here, we can observe that most of the correlation 

values obtained for the social predictors are negative, representing that the lower the 

predictor output, the better the performance, which may seem a little counter-

intuitive, at least for the social filtering recommenders (Personal and PureSocial). 

Predictor Random CB ItemPop kNN pLSA 

Average Count -0.023 -0.068 -0.170 -0.018 -0.087 

Count -0.012 -0.236 -0.242 -0.086 -0.198 

Mean 0.036 0.182 0.100 0.047 0.118 

Standard deviation -0.009 0.089 0.079 0.092 0.082 

Autocorrelation 0.045 -0.069 -0.089 -0.012 -0.055 

TimeSimple Clarity 0.031 0.274 0.314 0.169 0.240 
ItemTime Clarity 0.021 -0.145 0.004 0.025 -0.053 

ItemPriorTime Clarity 0.011 -0.057 0.176 0.145 0.083 

Frequency-based Clarity 0.025 0.018 -0.287 -0.182 -0.220 

ItemSimple Clarity 0.020 -0.247 -0.163 -0.068 -0.186 

Table 6.15. Pearson’s correlation between log-based predictors and P@10 for different 

recommenders using 1R methodology (Last.fm five-fold dataset). 



132 Chapter 6. Performance prediction in recommender systems 

 

Among the social-based predictors, degree and two-hop neighbourhood size obtain 

better correlations than the rest. 

A similar situation is presented in Table 6.17, where the collaborative-social ver-

sion of the dataset is used. Again, most of the correlations with the social-based pre-

dictors are negative, and degree and two-hop neighbourhood size obtain higher cor-

relations (in absolute value). Interestingly, in this situation strong correlations are 

obtained with the user-based recommender (kNN), in particular with degree and the 

average neighbour degree predictors. Nonetheless, these correlations are lower than 

those obtained for the ItemSimple predictor with the collaborative filtering recom-

menders. At the same time, this predictor always obtains worse correlations (in abso-

lute value) than the social-based predictors for the social filtering recommenders, as 

expected. 

Additionally, note that the number of points used in the correlation computation 

is different in each version of the dataset, namely: in the collaborative-social version 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.032 0.122 0.113 0.031 0.062 0.111 

Count (test) 0.158 0.252 0.382 0.167 0.235 0.174 

Mean -0.066 0.033 -0.012 0.023 -0.057 -0.051 

Standard deviation 0.034 0.054 -0.020 0.115 0.128 0.183 

Avg neighbour degree -0.062 -0.089 -0.013 0.011 -0.074 -0.106 

Betweenness centrality -0.031 -0.016 0.027 -0.038 -0.012 -0.079 

Clustering coefficient 0.049 -0.084 -0.023 0.048 -0.027 -0.035 
Degree -0.038 -0.046 0.015 -0.059 -0.147 -0.133 

Ego components size -0.058 0.005 0.004 -0.046 -0.056 -0.020 

HITS -0.021 -0.043 0.005 0.061 0.038 0.000 

PageRank -0.022 -0.025 -0.023 -0.039 -0.102 -0.037 

Two-hop neighbourhood -0.080 -0.082 0.004 -0.054 -0.123 -0.136 

ItemSimple Clarity 0.030 0.157 0.130 0.050 0.072 0.126 

Table 6.16. Pearson’s correlation between social-based predictors and P@10 for different 

recommenders using AR methodology (CAMRa Social). 

Predictor Random ItemPop kNN pLSA Personal PureSocial 

Count (training) 0.012 0.098 0.203 0.107 0.058 0.111 

Count (test) 0.096 0.207 0.389 0.179 0.232 0.170 

Mean -0.067 0.000 -0.126 -0.024 -0.051 -0.050 

Standard deviation 0.082 0.014 -0.029 0.016 0.129 0.182 

Avg neighbour degree 0.071 -0.008 0.152 0.046 -0.073 -0.104 

Betweenness centrality -0.007 -0.008 0.010 -0.005 -0.012 -0.078 

Clustering coefficient 0.006 -0.022 0.152 0.076 -0.032 -0.035 

Degree 0.032 0.018 0.164 0.006 -0.143 -0.134 

Ego components size 0.026 0.044 0.133 0.002 -0.053 -0.022 

HITS -0.011 -0.034 -0.001 0.061 0.038 0.001 
PageRank -0.002 0.021 0.118 0.014 -0.099 -0.040 

Two-hop neighbourhood 0.059 -0.015 0.130 0.012 -0.121 -0.135 

ItemSimple Clarity 0.010 0.120 0.211 0.129 0.070 0.126 

Table 6.17. Pearson’s correlation between social-based predictors and P@10 for different 

recommenders using AR methodology (CAMRa Collaborative). 
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the number of users contained in the test set is twice the number available in the 

social version (see Appendix A.1.3), which means that significant correlations can be 

achieved with lower values (as described in Chapter 5). 

In the results described above, we can observe how, like in the previous sections, 

the size of the user profile in test (predictor count in test) obtains significant correla-

tions. This trend, however, is almost neutralised in the collaborative-social dataset 

with respect to the Random recommender. Thus, as before, we would attempt to use 

the 1R methodology with each dataset in order to obtain unbiased correlations to-

wards users with more ratings in test. However, due to the lack of coverage of Per-

sonal and PureSocial recommenders, this methodology do not obtain sensible results 

(for instance, the value of precision at 10 is almost invariably 0.10, that is, the maxi-

mum possible value when only one relevant document – as assumed in the 1R meth-

odology – is retrieved in the top 10, mainly because the recommender is not able to 

retrieve most of the not relevant items). This lack of coverage is natural for these 

recommenders since they can only suggest items rated by users in the active user‟s 

social network (see Appendix A.2 for details on the implementation of the algo-

rithms). 

In conclusion, most of the social performance predictors proposed obtain sig-

nificant correlations, however, correlations with the social filtering methods are 

not so strong as we would expect. Nonetheless, the ItemSimple clarity does 

obtain significant correlations with respect to most of the recommenders, high-

lighting the importance and validity of this predictor even when the main input of 

some recommenders (social network) is so different to that of the predictor (ratings). 

6.5.5 Discussion 

The reported experiments confirm that it is possible to predict a recommender‟s per-

formance and obtain strong correlations in this regard. The results show that, in gen-

eral, the proposed predictors (mostly based on Kullback-Leibler divergences over 

different language models and other concepts from Social Graphs and Information 

Theory such as entropy) obtain significant correlations in the three spaces consid-

ered: ratings, logs, and social networks. More importantly, these correlations are 

stronger than those obtained by more simple predictors, such as the profile size of a 

user, the standard deviation of her ratings, and the user‟s performance using a valida-

tion split. Specifically, for each recommendation input considered we have observed 

the following: 

 Clarity-based predictors are very powerful for rating-based preferences, in par-

ticular, the ItemSimple, IRUser, and IRUserItem clarity predictors obtain 

strong correlations for most of the recommendation methods. 
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 The use of the item space as a contextual variable shows strong correlation 

values when the AR methodology is used, but these correlations decrease when 

we use unbiased methodologies, which may indicate that this new dimension is 

in fact capturing the item popularity and, thus, when the popularity bias is neu-

tralised such predictors show less predictive power. We find a similar situation 

with the item clarity and the user space used as the contextual dimension. 

 Temporal and log-based versions of the clarity predictor show higher predic-

tion power than the rest of predictors. 

 Social-based predictors are not the ones with the strongest correlation regard-

ing the social filtering recommenders in this experiment, but the correlation 

found is significative and they could serve as a complement to other predictors 

based on a different input such as the rating-based. 

 The ItemSimple clarity predictor consistently obtains strong correlation values 

in most of the datasets where we have analysed it. This is an evidence of the 

theoretical power of the user clarity to capture the uncertainty in user‟s tastes, 

even when the recommender‟s input is different (social filtering recommend-

ers) or when we apply some transformation to the data (frequency-based clarity 

with transformation from implicit to explicit). 

 As described in the Appendix A.4, most of the correlations presented in this 

chapter are stable when other evaluation metrics and correlation coefficients 

are used. 

In the Recommender Systems field there are, however, additional problems due 

to subtle differences with respect to the common settings and experimental assump-

tions in Information Retrieval. Since we aim to predict the performance of a recom-

mender, we have to be sure that we are using an unbiased performance metric, and 

its subsequent evaluation methodology. As we analysed in Chapter 4 there are at least 

two biases in the evaluation of recommender systems which may distort the results: 

data sparsity and item popularity. Thus, in this chapter we have computed correla-

tions between the output of the predictors and the evaluation metrics using different 

evaluation methodologies, in order to analyse how sensitive the different proposed 

predictors are to these biases. Interestingly, although the correlations may change 

drastically when different evaluation methodologies are considered, most of the per-

formance predictors still obtain good correlations. In particular, this result evidences 

that our proposed predictor are not so prone to the analysed biases like other simple 

predictors. 

Finally, in Figure 6.3 we summarise the correlations found for the proposed pre-

dictors in each dimension – ratings, logs, and social. We have selected the most rep-

resentative evaluation methodology (AR for rating and social data, and 1R for log 
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data) and a subset of the evaluated predictors and recommenders from each experi-

ment, where the same information presented in Table 6.7, Table 6.14, and Table 6.17 

(except for the average and median correlation values) is depicted in a more visual 

form. In particular, we may observe that predictors in MovieLens seem to be more 

redundant since the correlations are too similar. 

 

Correlation between rating-based user 

predictors and recommenders using AR 

methodology in MovieLens (Table 6.7). 

 

Correlation between log-based user 

predictors and recommenders using 1R 

methodology in Last.fm (Table 6.14). 

 

Correlation between social-based user 

predictors and recommenders using AR 

methodology in CAMRa collaborative 

(Table 6.17). 

Figure 6.3. Heatmap of the correlation values between a subset of predictors and 

recommenders, using the most representative methodologies for the three considered spaces. 
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From the figure we may also observe that in Last.fm and CAMRa datasets such 

redundancy is much lower and the predictors are quite different. Moreover, the first 

column and row (from the bottom) represent the recommender and predictor base-

lines, which serve as references from where the correlations should be analysed. In 

the three cases we can observe that most of the predictors obtain larger (darker) val-

ues than the count predictor. In the first case (rating-based predictors), however, it is 

clear that the correlation depends more on the recommender and less on the actual 

predictor. 

6.6 Conclusions 

We have proposed adaptations of query performance techniques from ad-hoc In-

formation Retrieval to define performance predictors in Recommender Systems. 

Taking inspiration in the query predictor known as query clarity, we have defined and 

elaborated in the Recommender Systems domain several predictive models according 

to different formulations and assumptions. Furthermore, we propose performance 

predictors from theories and models of Information Theory, Social Graph Theory, 

and Information Retrieval based on three types of preference data: rating-based, log-

based, and social-based. 

We find several effective schemes with a high predictive power for recommend-

er systems performance. We have proposed different ways for the adaptation of the 

query clarity predictor to recommender systems depending on the equivalences be-

tween the involved spaces. The clarity formulation is powerful because of its theo-

retical soundness, which is suitable to different domain-oriented adaptations. Hence, 

for rating-based preferences we use different expansions which take into account the 

rating values and the items rated by the user. For log-based preferences we exploit 

the co-occurrences of the items in the user profile and, more importantly, the tempo-

ral dimension, which allows for more principled functions such as the temporal 

Kullback-Leibler divergence or the user‟s autocorrelation. Finally, for social-based 

preferences we exploit the user‟s social network and different graph metrics are used 

apart from the user clarity based on the ratings. The results, as summarised in the 

previous section, are in general positive and provide evidences that the proposed 

functions are able to indeed predict the performance of user or items in recom-

mender systems. 

Furthermore, by analysising the behaviour of trivial predictors (such as the count 

of ratings in training and test) we have been able to uncover noisy biases or sensitiv-

ity to irrelevant variables in the way performance is measured. Irrelevant and uninter-

esting in the sense that it is not clear that the variations due to these variables really 

reflect actual differences in quality. As a result, we have used unbiased evaluation 
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methodologies where non trivial predictors still obtain positive results with respect to 

performance correlation. 

As a side-effect, our study introduces an interesting revision of the gray sheep 

user concept. A simplistic interpretation of the gray sheep intuition would suggest 

that users with a too unusual behavior are a difficult target for recommendations. It 

appears however in our study that, on the contrary, users who somewhat distinguish 

themselves from the main trends in the community are easier to give well-performing 

recommendations. This suggests that perhaps the right characterisation of a gray 

sheep user might be one who has scarce overlap with other users. On the other hand, 

the fact that a clear user distinguishes herself from the aggregate trends does not 

mean that she does not have a sufficiently strong neighbourhood of similar users. In 

particular, this seems to indicate that users who follow mainstream trends are more 

difficult to be suggested successful items by a recommender system (at least, by a 

personalised one). In Information Retrieval, one can observe a similar trend: more 

ambiguous (mixture of topics) queries perform worse than higher-coherence queries 

(Cronen-Townsend et al., 2002). 

In the future we plan to explore further performance predictors. Specifically, we 

are interested in incorporating explicit recommender dependence into the predictors, 

so as to better exploit the information managed by the recommender, allowing to the 

predictor a smoother adaptation to the recommender performance, and increasing 

the final correlation between them. Additionally, we are also interested in exploring 

alternative item-based predictors apart from those defined in this chapter, and, even-

tually, using other information sources such as log-based preference data and even 

the social network of the users who rated a particular item. 
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